The Root of the Matter – Are Changes in Corn Root Morphology Responsible for Improved Yield and Higher Nitrogen Use Efficiency in Diversified Cropping Systems?

Date: 
Aug 2019

Issue

There is an important need to develop sustainable alternatives to the corn-soybean cropping system that dominates the upper Midwest, as evidenced by recurring problems with water quality, susceptibility to weather extremes and low profitability. Many of the shortcomings of the existing corn-soybean system are due to its sole reliance on short-season annual crops and the exclusion of deep-rooted perennial crops like alfalfa that provide long periods of living cover. The Iowa Nutrient Reduction Strategy noted that "extended rotations" can reduce both applications of nitrogen (N) inputs and undesired N discharges to the environment.

Objective

Researchers will investigate mechanisms whereby extending a corn-soybean rotation with small grain and legume forage crops can simultaneously increase corn yield and N-use efficiency. We expect that soil resistance to corn root penetration will be lower, corn root systems will be larger and deeper, and the rate of potential N mineralization from soil organic matter will be greater for corn following alfalfa than following soybean. Empirical data from these research plots will be used within the Agricultural Production Systems Simulator model (APSIM), which can assess the impact of various soil, climate and crop management factors on crop productivity, nitrate leaching and nitrous oxide emissions to the atmosphere. Insights from this project will inform strategies promoting higher agronomic productivity, greater N use efficiency and lower potential for N discharges to water and air. This project will use findings to parameterize a widely used crop growth model, the Agricultural Production Systems sIMulator (APSIM).

Approach

We will measure soil physical properties, corn root architecture, soil N dynamics, and corn performance in a long-term experiment in Boone County, Iowa, that includes a two-year corn-soybean rotation and a four-year corn-soybean-oat/alfalfa-alfalfa rotation. Data will be analyzed with linear mixed-effects models and non-linear regression techniques to evaluate the effects of rotation system and time since planting on corn shoot mass, N uptake and root mass and depth of soil penetration. Root front velocity, maximum root depth, root mass and specific root length (root length per unit of root mass) will be used in the APSIM model to evaluate corn growth and yield, and N discharges from soil, in the contrasting rotation systems.

We will produce scientific publications and conduct outreach activities to share information about the effects of extended rotations on corn root growth, yield and water quality.

Project Updates

Note: Project reports published on the INRC website are often revised from researchers' original reports to increase consistency.

September 2021

FINAL REPORT

Measurements of corn root mass, root distribution, and grain yield were made in 2018-2020 in two contrasting rotation systems, a 2-year corn-soybean rotation and a 4-year corn-soybean-oat/alfalfa-alfalfa rotation that periodically received cattle manure. Plots of each rotation system were present in four replicate blocks within a 9-hectare experiment established in 2001 at the Iowa State University Marsden Farm in Boone County. Corn root mass to a soil depth of 60 cm was measured at 3 and 105 days after planting in 2019, and at 4 and 117 days after planting in 2020. Four soil samples per plot were drawn at a location 10 cm from corn rows in 15 cm depth increments using a 32-mm-diameter soil probe. Soil from each depth increment within a plot was composited and roots were recovered using a sequence of elutriation (washing), flotation, recovery from organic debris using tweezers and a stereo microscope, drying and weighing.

No significant year effect on corn root mass was detected. In contrast, researchers found a significant sampling date x rotation interaction. Corn root mass increased 108%, from 515 to 1,073 kg/ha, in the 2-year rotation, whereas root mass increased 49%, from 782 to 1,160 kg/ha, in the 4-year rotation. The majority of the additional root mass in the 2-year rotation was found in the top 15 cm of the soil profile. If the initial levels of root residue decayed at an equal rate in the two rotation treatments, or if they persisted equally in the two rotations, these results would indicate that the 2-year rotation added more root mass during the growing season than did the 4-year rotation.

Maximum corn root depth was measured throughout the 2018-2020 cropping seasons in both rotation systems. Maximum root depth was determined five times in 2018, seven times in 2019, and eight times in 2020, based on four cores per plot drawn with a 19-mm-diameter soil probe. Maximum root extension was determined visually and quantified with a meter stick. Maximum root depth differed among years (p<0.0001) and rotation systems (p=0.0013), but no year x rotation system interaction occurred (p=0.66).

Averaged over rotation treatments, root depth was greatest in 2019 (102.5 cm), least in 2018 (53.7 cm), and intermediate in 2020 (90.0 cm). Averaged over years, maximum root depth was 14% higher in the 4-year rotation (87.4 cm) than in the 2-year rotation (76.7 cm). These observations corroborated the hypothesis that maximum corn root depth would be greater for corn following alfalfa in the 4-year rotation than following soybean in the 2-year rotation.

Soil penetration resistance was measured using a compaction meter. Values were recorded every 2.5 cm to 45 cm depth immediately following planting and approximately 60 days after planting. Ten measurements were taken randomly throughout each plot. Measurements were taken after a saturating rain to avoid capturing differences due to soil moisture. Compared to the 4-year system, soil penetration resistances in the simpler 2-year rotation at 0-30 cm depth were 30% greater, suggesting that cropping systems influenced soil physical properties that in turn affected corn root growth.

Corn grain yield was determined using a 6-row combine equipped with a yield monitor and moisture meter. Sampling areas for yield were 4.6 m x 84 m. For statistical comparisons, all grain yield data were adjusted to 15.5% moisture. Corn yield was affected by a significant year x rotation interaction. In 2018, yield was 23% greater in the 4-year rotation (14.0 Mg/ha) than in the 2-year rotation (11.3 Mg/ha). However, it did not differ significantly between rotation systems in 2019 and 2020. Averaged over rotation systems, mean corn yield in both of the latter two years was 12.6 Mg/ha.

Taken together, data from this project indicate that compared with corn following soybean in a 2-year rotation, corn following alfalfa in a 4-year rotation had longer roots and produced yields that were as high or higher. The data also suggest that corn in the 4-year rotation invested less biomass in roots than did corn in the 2-year rotation. Possible differences between rotation systems in patterns of biomass allocation merit more attention in future research activities.

Activities related to this project included 10 presentations and several publications. Peer-reviewed publications related to this research will be submitted to the INRC digital repository.  

December 2020

Measurements of corn root mass, root distribution and grain yield were made in 2018-2020 in a 2-year corn-soybean rotation and a 4-year corn-soybean-oat/alfalfa-alfalfa rotation that periodically received cattle manure. Plots of each rotation system were present in four replicate blocks within a 9-hectare experiment established in 2001 at the Iowa State University Marsden Farm in Boone County. Corn root mass to a soil depth of 60 cm was measured at 3 and 105 days after planting in 2019, and at 4 and 117 days after planting in 2020. Four soil samples per plot were drawn with a 32-mm-diameter soil probe. Roots were recovered using a sequence of elutriation, flotation, recovery from organic debris using tweezers and a stereo microscope, drying and weighing. Maximum corn root depth was also measured throughout the 2018-2020 cropping seasons in both rotation systems. Root depth was determined five times in 2018, seven times in 2019, and eight times in 2020, using four cores per plot drawn with a 19-mm-diameter probe. Maximum root extension was determined visually and quantified with a meter stick. Corn grain yield was determined using a 6-row combine equipped with a yield monitor and moisture meter. Sampling areas were 4.6 m x 84 m. For statistical comparisons, all grain yield data were adjusted to 15.5% moisture.

Measurements indicated that:

Root mass recovered from the soil to 60 cm depth increased in both cropping systems from just after corn planting until the late season. The amount of root residue present in the soil early in the season was 2.3-fold greater in the 4-year rotation (i.e., following alfalfa) than in the 2-year rotation (i.e., after soybean). Also, the amount of root mass late in the season did not differ significantly between the rotation treatments. If the initial levels of root residue decayed at an equal rate in the two rotation treatments, or if they persisted equally in the two rotations, these results would indicate that the 2-year rotation added more root mass during the growing season than did the 4-year rotation.

Maximum root depth differed among years and rotation systems. Averaged over rotation treatments, root depth was greatest in 2019, least in 2018 and intermediate in 2020. Averaged over years, maximum root depth in the 4-year rotation was 14% higher in the 4-year rotation (87.4 cm) than the 2-year rotation (76.7 cm). These observations corroborated the hypothesis that maximum corn root depth would be greater for corn following alfalfa in the 4-year rotation than following soybean in the 2-year rotation.

Corn yield was 23% greater in the 4-year rotation than the 2-year rotation in 2018 but did not differ between rotation systems in 2019 and 2020, when yields averaged 12.6 Mg ha-1.

Outreach included 2 presentations.

December 2019

Measurements to quantify corn root distribution and mass were made in 2019 in two contrasting cropping systems, a 2-year corn-soybean rotation and a 4-year corn-soybean-oat/alfalfa-alfalfa rotation that periodically received cattle manure. Plots of the two cropping systems were present in four replicate blocks within a 9-hectare experiment established in 2001 at the Iowa State University Marsden Farm in Boone County. Corn planting was delayed by wet weather until June 3, 2019. Maximum corn root depth was determined seven times during the growing season, from 23 to 105 days after planting, based on four cores per plot drawn with a 19-mm.-diameter soil probe. Averaged over all sampling dates, corn root depth was 18.5% greater in the 4-year rotation (68.5 cm) than in the 2-year rotation (57.8 cm). The greatest corn root depth was observed at 77 days after planting, at which time roots were 14.8% deeper in the 4-year rotation (109.5 cm) than in the 2-year rotation (95.4 cm). These observations corroborated our hypothesis that maximum corn root depth would be greater for corn following alfalfa in the 4-year rotation than following soybean in the 2-year rotation.

Corn roots were sampled on five dates, from 3 to 105 days after planting, in 15 cm. increments to a depth of 60 cm. using a 32-mm-diameter soil probe. Four cores were drawn from each plot at a location 10 cm. to the side of corn rows. Soil from each depth increment within a plot was composited and roots were recovered from soil using a sequence of elutriation, flotation and air column separation. Roots are being removed from organic debris using tweezers and a stereo microscope. When that step is complete, roots will be dried and weighed, and comparisons  made by rotation system and depth increment. At the same dates that root samples were collected, corn shoot mass was measured by harvesting, drying and weighing eight plants per plot. Shoot mass data are being analyzed.

Samples with which to determine total aboveground corn N uptake were taken at reproductive maturity and are being analyzed. Corn grain yield was determined on Nov. 6, using a combine harvester. Grain yield did not differ significantly (p=0.74) between the 4-year rotation (12.7 Mg ha-1) and the 2-year rotation (12.8 Mg ha-1), though the application rate of nitrogen fertilizer was 58% lower in the 4-year rotation (81 kg N ha-1) than the 2-year rotation (193 kg N ha-1).

Root front velocity, maximum root depth and root mass data will be used in the APSIM model to evaluate corn growth and yield and N discharges from soil in the contrasting rotation systems. The modeling work will be part of a Ph.D. dissertation.

Publications during this period: